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Cafestol, a diterpene present in unfiltered coffee brews
such as Scandinavian boiled, Turkish, and cafetière
coffee, is the most potent cholesterol-elevating com-
pound known in the human diet. Several genes involved
in cholesterol homeostasis have previously been
shown to be targets of cafestol, including cholesterol
7�-hydroxylase (CYP7A1), the rate-limiting enzyme in
bile acid biosynthesis. We have examined the mecha-
nism by which cafestol elevates serum lipid levels.
Changes in several lipid parameters were observed in
cafestol-treated APOE3Leiden mice, including a signif-
icant increase in serum triglyceride levels. Microarray
analysis of these mice identified alterations in hepatic
expression of genes involved in lipid metabolism and
detoxification, many of which are regulated by the nu-
clear hormone receptors farnesoid X receptor (FXR)
and pregnane X receptor (PXR). Further studies dem-
onstrate that cafestol is an agonist ligand for FXR and
PXR, and that cafestol down-regulates expression of
the bile acid homeostatic genes CYP7A1, sterol 12�-
hydroxylase, and Na�-taurocholate cotransporting

polypeptide in the liver of wild-type but not FXR null
mice. Cafestol did not affect genes known to be up-
regulated by FXR in the liver of wild-type mice, but did
increase expression of the positive FXR-target genes
intestinal bile acid-binding protein and fibroblast
growth factor 15 (FGF15) in the intestine. Because
FGF15 has recently been shown to function in an en-
terohepatic regulatory pathway to repress liver expres-
sion of bile acid homeostatic genes, its direct induction
in the gut may account for indirect effects of cafestol on
liver gene expression. PXR-dependent gene regulation
of cytochrome P450 3A11 and other targets by cafestol
was also only seen in the intestine. Using a double
FXR/PXR knockout mouse model, we found that both
receptors contribute to the cafestol-dependent induc-
tion of intestinal FGF15 gene expression. In conclusion,
cafestol acts as an agonist ligand for both FXR and
PXR, and this may contribute to its impact on choles-
terol homeostasis. (Molecular Endocrinology 21:
1603–1616, 2007)

CONSUMPTION OF UNFILTERED coffee brews
such as the Scandinavian-type boiled, cafetière

(French-press), and Turkish coffee raises triacylglyc-
erol and low-density lipoprotein (LDL)-cholesterol con-
centrations in humans (1–3). A high intake of boiled
coffee was associated with hypercholesterolemia and
risk of coronary heart disease in Norway and Finland
(1, 4, 5), and cafestol was later identified as the factor

responsible (6–8). Scandinavian and other unfiltered
coffee brews contain 3–6 mg cafestol per cup, with
variable but smaller amounts present in espresso cof-
fee (3). Cafestol may also act as an anticarcinogen,
with some studies suggesting that there is an inverse
association between coffee consumption and the de-
velopment of colorectal cancer (9, 10).
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Cholesterol homeostasis is achieved through the
coordinate regulation of its dietary uptake, endoge-
nous biosynthesis, and disposal in the form of bile
acids. Bile acids are not only metabolic byproducts,
but are essential for the appropriate absorption of
dietary lipids and fat-soluble vitamins. Approximately
95% of bile acids are recycled in the small intestine by
enterocytes and returned to the liver via the enterohe-
patic circulation. Bile acids have been shown to be
physiological ligands for the farnesoid X receptor
(FXR). FXR regulates transcription by binding as a
heterodimer with retinoid X receptors (RXRs) to DNA
response elements in the regulatory regions of target
genes. When activated by bile acids, FXR induces
expression of small heterodimer partner (SHP), which
potently inhibits the activity of another orphan recep-
tor, liver receptor homolog 1. Liver receptor homolog 1
is required for cholesterol 7�-hydroxylase (CYP7A1)
promoter activity (11, 12), and this inhibition results in
transcriptional repression of the gene encoding
CYP7A1, the rate-limiting enzyme in bile acid biosyn-
thesis (13). The involvement of the FXR-SHP pathway
in the repression of CYP7A1 has been well character-
ized in rodents, but the relevance to humans remains
to be established. FXR also activates the gene encod-
ing intestinal bile acid-binding protein (IBABP), a bile
acid transporter (14), thereby demonstrating that bile
acids can transcriptionally regulate their own biosyn-
thesis and enterohepatic transport. The pregnane X
receptor (PXR) can also inhibit CYP7A1 expression
(15). PXR is activated by a variety of xenobiotics, and
it protects the liver from toxic compounds (15, 16).
Certain bile acids inhibit CYP7A1 expression indepen-
dently of SHP, and this process is thought to involve
PXR (17, 18).

Recent studies have provided an additional mech-
anism for the repression of bile acid synthesis that
involves communication between the intestine and
liver. Fibroblast growth factor 15 (FGF15) is selectively
induced by bile acids and the synthetic FXR agonist
GW4064 in the small intestine and then acting through
FGFR4, in hepatocytes, represses CYP7A1 expres-
sion in the liver (19).

APOE3Leiden transgenic mice are an established
mouse model in which to study hyperlipidemia and
atherosclerosis (20, 21). Due to the concomitant ex-
pression of APOE3Leiden and APOC1 in these mice,
they have an attenuated clearance of apoB-containing
lipoproteins (20). Therefore, APOE3Leiden mice dis-

play a lipoprotein profile comparable to that of patients
with dysbetalipoproteinemia, i.e. plasma cholesterol
and triglyceride levels are increased, which is mainly
confined to the very low-density lipoprotein/low den-
sity lipoprotein (VLDL/LDL) fraction, and they respond
to hypolipidemic drugs and dietary compounds such
as statins (22), fibrates (23), fish oil (24), stanol esters
(25), and cafestol (26) in a similar way to humans.

Cafestol has been shown to suppress bile acid syn-
thesis in APOE3Leiden mice by down-regulation of
CYP7A1 (26), with a concomitant increase in serum
lipids similar to that observed in humans (26). In hu-
mans, a disabling mutation in the CYP7A1 gene is
associated with increased plasma triglycerides and
LDL cholesterol levels (27).

The objective of this study was to elucidate the
molecular mechanism underlying the ability of cafestol
to suppress CYP7A1 and increase serum lipids. Here
we report the effect of cafestol on the expression of
FXR target genes in pathways of bile acid biosynthesis
both in the liver and intestine and show that cafestol
has a tissue-specific effect upon PXR-target genes in
the intestine, including FGF15, further supporting the
recent finding that the intestine plays a major role in
regulating bile acid biosynthesis in the liver. Our find-
ings offer an explanation for the hyperlipidemic action
of this widely consumed dietary component.

RESULTS

Cafestol Regulates Metabolic and Detoxification
Genes in Mice

Our first aim was to identify novel genes and regulatory
pathways associated with the cholesterol-raising effect
of cafestol by genome-wide expression analysis.
ApoE3Leiden transgenic mice were used to identify
genes differentially regulated by a 30-d cafestol-supple-
mented diet compared with control diet. APOE3Leiden
transgenic mice are a frequently used model to study
diet-induced hyperlipidemia (20), and consistent with this
the cafestol-fed mice had a 40% increase in serum cho-
lesterol levels compared with the control group (P �
0.05) (Table 1), in accordance with a previous report (26).
This increase in serum cholesterol is of the same order of
magnitude as that observed in humans after cafestol
consumption (8). An increase of 62% was observed in
serum triglyceride levels (P � 0.05) (Table 1), which is

Table 1. The Effect of Cafestol Consumption on Lipid Parameters in ApoE3Leiden Mice

Treatment Weight (g)
Total

Cholesterol
(mM)

Total
Triglyceride

(mM)

Free Fatty
Acid (FFA)

(mM)

Lipoprotein
Lipase Activity

(�mol/FFA/ml/h)

Hepatic Lipase
Activity

(�mol/FFA/ml/h)

Control 23.4 � 1.4 14.9 � 3.4 1.3 � 0.5 0.84 � 0.12 14.5 � 3.7 9.9 � 1.3
Cafestol 22.7 � 1.4 20.8 � 4.3a 2.11 � 0.6a 0.93 � 0.16 9.5 � 1.3a 7.8 � 0.9a

APOE3Leiden mice were fed a control diet or diet supplemented with cafestol for 30 d. Values are the mean � SD of eight mice
per group. Significant differences between the treatment groups were calculated using the nonparametric Mann-Whitney test.
a P � 0.05.
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also the same order of magnitude observed in humans
(28). In addition, lipoprotein lipase activity was decreased
by 34% in the cafestol-treated group compared with the
control group (P � 0.05) (Table 1), and hepatic lipase
activity was decreased by 21% by cafestol treatment
(P � 0.05) (Table 1).

Hepatic mRNA from four individual cafestol-fed
mice was subjected to microarray analysis using
mRNA from the control group (n � 7) as a reference. A
total of 648 genes showed a significant difference in
expression in the cafestol-fed group compared with
the control group (P � 1 � 10�6, z-test). The data
show that cafestol alters the expression of a large
number of genes, including many involved in metab-
olism and detoxification processes, as defined in the
Gene Ontology database (Table 2; and supplemental
Table 1, published as supplemental data on The En-
docrine Society’s Journals Online web site at http://
mend.endojournals.org). The GEO data deposition
number is GSE 3809.

Cafestol Activates FXR and PXR in Vitro

Based on the observed effect on potential FXR and PXR
target genes in the microarray, we investigated the effect
of cafestol on several nuclear receptors. In the Gal4-
based transactivation assay, ligand-binding domains of
different nuclear receptors are fused to the Gal4 DNA-
binding domain, and effects on expression directed by a
Gal4-dependent reporter plasmid are tested. Cafestol
was found to activate the ligand-binding domains of FXR

and PXR, as compared with their established ligands
(Fig. 1). Additionally, human constitutive androstane re-
ceptor, ROR, retinoic acid receptor-related orphan re-
ceptor-�, retinoic acid receptor-related orphan recep-
tor-�, and mouse SHP chimeras were not activated by
cafestol (data not shown).

To confirm the activation of FXR, the effect of cafestol
on full-length receptor for human and mouse FXR was
tested. Cafestol and the bile acid chenodeoxycholic acid
(CDCA) activate wild-type human FXR but not two dif-
ferent mutant forms of the receptor, a FXR �AF2 and a
W469A mutant (29) (Fig. 2A). With respect to mouse FXR,
both compounds showed dose-dependent activation,
with a greater response observed with the bile acid (Fig.
2B). These responses were dependent on FXR activa-
tion, because they were not observed with the FXR �9C
mutant, lacking the terminal amino acids 476–484 cor-
responding to helix 12 (Fig. 2B). A mammalian two-hy-
brid assay was used to test the ability of cafestol to
induce coactivator recruitment to mouse FXR. In this
assay, Gal4 was fused with the coactivator SRC-1 (ste-
roid receptor coactivator 1), and mouse FXR was fused
with the transactivator VP16. The ability of both cafestol
and CDCA to induce high levels of luciferase expression
in a dose-dependent manner indicates that both com-
pounds induced interaction of FXR with the coactivator
SRC-1 (Fig. 2C).

Next we analyzed the cafestol responsiveness of the
promoter of a known FXR target gene. Both cafestol
and CDCA induced the activity of the human bile salt

Table 2. Microarray Data of Selected Genes in APOE3Leiden Mice after Cafestol Treatment

GenBank Accession No. Gene Name Function Fold Change Potential
Target Gene Reference

Genes up-regulated
by cafestol
AA067003 GST�1 Detoxification 5.9 PXR 48
W34862 GST�6 Detoxification 4.3
AA437941 GST pi2 Detoxification 3.8
AI892747 GST�2 Detoxification 2.5
AA105866 GST�4 Detoxification 1.9
AA106125 Cytochrome

P450, 2A4/5
Detoxification 1.8

AA822098 APOA1 Cholesterol metabolism 1.5 PXR 73
AA666595 Phospholipid

transfer protein
Cholesterol metabolism 1.5 FXR 50

AA739040 Lipoprotein lipase Fatty acid/triglyceride
metabolism

1.5

Genes down-regulated
by cafestol
AI464796 Cytochrome P450, 7�1 Bile acid metabolism �3.1 FXR and PXR 3, 15, 51
AA822113 Cytochrome P450, 17 Steroid metabolism �1.8
AA245848 3�-Hydroxysteroid

dehydrogenase type 3
Steroid metabolism �1.8

AI597312 3�-Hydroxysteroid
dehydrogenase type 1

Steroid metabolism �1.5

AA674450 APOA5 Triglyceride metabolism �1.2

APOE3Leiden mice were fed a control diet (n � 7) or diet supplemented with cafestol (n � 4) for 30 d. Poly(A)� RNA was isolated
from the livers and microarray analysis was performed. �, Indicates a down-regulation in gene expression.
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export pump (BSEP) promoter in HepG2 cells cotrans-
fected with expression plasmids for FXR and RXR (Fig.
2D). Both cafestol and CDCA also induced activity of
the IBABP promoter similarly in cotransfected HepG2
cells (Fig. 2E). Overall, these results demonstrate that
cafestol, like CDCA, activates FXR.

The capability of cafestol to activate PXR was also
further examined using the full-length receptor. Be-
cause mouse and human PXR differ in their responses
to xenobiotics, both the full-length mouse and human
PXR were tested. Cafestol activated both mouse (Fig.
3A) and human PXR (data not shown), and the ob-
served responses were dependent on PXR activation,
because they were not observed with PXR mutants,
E424K (mouse) (Fig. 3A) and E427K (human) (not
shown) lacking the activation function 2 (AF-2) trans-
activation function. Cafestol also induced coactivator
recruitment to mouse PXR (Fig. 3B) and induced cy-
tochrome P450 3A4 (CYP3A4) promoter activity via
human PXR, although to a lesser extent than the
known ligand, rifampicin (Fig. 3C).

FXR Is Required for Cafestol Regulation of Target
Genes in Mice

FXR�/� and PXR�/� mice were used to analyze the
role of these receptors for the in vivo responses to
cafestol. As expected, cafestol feeding for 7 d did not

alter serum cholesterol and triglyceride levels in these
mice (data not shown). Also as expected, dietary ad-
ministration of cholic acid (CA) strongly repressed ex-
pression of CYP7A1, CYP8B1, and Na�-taurocholate
cotransporting polypeptide (NTCP) in wild-type mice.
Cafestol feeding resulted in a more modest but repro-
ducible inhibition of these three well-known negatively
regulated targets of FXR (Fig. 4A). In FXR�/� mice,
basal expression of all three genes was increased, as
expected, and the expression was completely unre-
sponsive to either CA or cafestol feeding, demonstrat-
ing that FXR is required for the repression of these
genes by CA and cafestol in vivo.

In contrast to the effects on genes down-regulated
by FXR, no consistent effects of cafestol feeding were
observed on genes known to be up-regulated by FXR
in the liver. For example, cafestol feeding did not affect
BSEP or SHP expression in either wild-type or FXR�/�

mice, although dietary CA induced both target genes
in wild-type mice (Fig. 4A).

However, cafestol did induce the expression of the
FXR-target gene IBABP in the intestine, albeit to a
more modest level than the induction seen with CA
after 7 d feeding (Fig. 4B). A recent publication showed
that FGF15 is also induced by CA and the synthetic
FXR agonist GW4064 in the intestine, and that the
FGF15 released from the gut signals to the liver to
repress CYP7A1 (19). Due to the induction of IBABP in
the intestine, but not other positively regulated FXR
target genes in the liver, we hypothesized that induc-
tion of FGF15 in the gut could account for the repres-
sion of CYP7A1 observed in the liver. To test this
hypothesis we performed a 14-h oral gavage feeding
study in wild-type and FXR�/� mice. Figure 5A shows
that cafestol does indeed induce FGF15 in the intes-
tine of wild-type mice. However, the induction in the
intestine appears to be partially via FXR because the
expression is reduced only 50% in the FXR knockout
mice. As predicted, there was a concomitant dramatic
repression in hepatic CYP7A1 mRNA expression (Fig
5B), but there was no induction in expression of SHP
or other positively regulated target genes in the liver
(data not shown).

Cafestol Regulates PXR-Target Gene Expression
in a Tissue-Specific Manner

Next we wanted to determine the in vivo role of PXR in
response to cafestol. Surprisingly, we did not observe
cafestol-induced activation of cytochrome P450 3A11
(CYP3A11) gene expression in the liver after feeding
for 14 h (data not shown), 3 d (Fig. 6A), or 7 d (data not
shown). However, cafestol did induce CYP3A11 ex-
pression in the intestine in a PXR-dependent manner
after 3 d (Fig. 6B) and 7 d feeding (data not shown).

Cafestol is known to induce the activity of several
glutathione-S-transferase (GST) enzymes (30, 31),
and, consistent with this, we observed induction in
gene expression of various GST isoforms in both the
livers of APOE3Leiden mice (Table 1) and in the wild-
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Fig. 1. Determination of the Ability of Cafestol to Interact with
a Range of Nuclear Receptors in Vitro

HepG2 cells were cotransfected with the Gal4 luciferase re-
porter and a series of chimeras in which the Gal4 DNA-binding
domain is fused to the indicated nuclear hormone receptor
ligand-binding domain. The cells were treated with a known
receptor-specific agonist or 20 �M cafestol. Results are ex-
pressed as normalized luciferase activity relative to the known
ligand control (set at 100%) (mean � SEM). Gal4 with cafestol
was normalized to the transactivation value obtained with the
Gal4-receptor chimera with ligand, which was set at 100%. The
ligands used were as follows. Mouse constitutive androstane
receptor (mCAR): 250 nM 1,4-bis[2-(3,5-dichloropyridyloxy)]
benzene (TCPOBOP); estrogen receptor-� (ER�): 1 �M estradiol
(E2); FXR: 100 �M CDCA; glucocorticoid receptor (GR): 100 nM

dexamethasone; LXR�: 1 �M LG101268; peroxisome prolifera-
tor-activated receptor (PPAR)�: 300 nM clofibrate; PPAR�: 1 �M

roziglitazone; mPXR: 10 �M PCN; RAR�: 1 �M all-trans retinoic
acid; RXR: 1 �M 9-cis-retinoic acid; thyroid hormone receptor
(TR)�: 1 �M T3; vitamin D receptor (VDR): 100 nM 1�,25-dihy-
droxyvitamin D3.
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Fig. 2. Cafestol Transactivates FXR
A, Cafestol transactivates human FXR. CV-1 cells were cotransfected with a luciferase reporter construct plus expression

vectors as indicated and treated with vehicle (dimethylsulfoxide), 1 �M CDCA (open bars) or 1, 10, 20 �M cafestol (black bars).
B, Cafestol transactivates mouse FXR. CV-1 cells were cotransfected with a luciferase reporter construct plus expression vectors
as indicated and treated with vehicle (dimethylsulfoxide), 1, 5, 10, 20 �M CDCA (open bars), or cafestol (black bars). C, Cafestol
enhances FXR interaction with the coactivator SRC-1. CV-1 cells were cotransfected with a luciferase reporter construct plus
expression vectors as indicated and treated with vehicle (dimethylsulfoxide), 1, 5, 10, 15, 20 �M CDCA (open bars), or cafestol
(black bars). Results are expressed as percent of the control, normalized to the GH internal control (mean � SEM). D, Cafestol
induces activity of the native BSEP promoter via FXR. HepG2 cells were transfected with a BSEP-promoter-luciferase construct
plus expression vectors and treated with vehicle (dimethylsulfoxide), 100 �M CDCA, or 56 �M cafestol. E, Cafestol induces activity
of the native IBABP promoter. HepG2 cells were transfected with an IBABP-promoter-luciferase construct plus expression
vectors and treated with 100 �M CDCA (open bar), vehicle (dimethylsulfoxide), or 10, 20, 40, 60, 80, 100 �M cafestol (black bars).
Results for each graph are expressed as normalized luciferase values relative to the GH or �-gal internal control (mean � SEM).
CAF, Cafestol; Mt, mutant; WT, wild type.
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type mice used for the 7-d study (data not shown). The
xenobiotic receptor PXR has been previously shown to
regulate several GST isoforms, including GST sub-
class �1 (GST�1) and GST subclass �1 (GST�1) in the
liver. In the 3-d study we observed induction in the
expression of GST�1 in the liver by both pregnenolo-
ne-16�-carbonitrile (PCN) and cafestol (Fig. 6C). How-
ever, in contrast to PCN, the hepatic induction by
cafestol was not PXR dependent. On the other hand,
in the intestine we observed a robust induction of
GST�1 expression by cafestol, which was blunted in
the PXR knockout mice (Fig. 6D). GST�1 was found to
be induced by both PCN and cafestol in the liver, and
by cafestol in the intestine; however, cafestol does not
regulate this gene via PXR in either the liver or the
intestine (data not shown).

The ATP-binding cassette transporter type A1
(ABCA1) regulates the basolateral transport of choles-
terol and phospholipids from enterocytes into the circu-
lation. It has been reported that ABCA1 knockout mice
have reduced intestinal cholesterol absorption (32). A
recent study showed that ABCA1 is induced in the in-
testine by PCN in wild-type mice, but not in PXR�/� mice
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Fig. 3. Cafestol Transactivates PXR
A, HepG2 cells were cotransfected with a luciferase re-

porter construct plus expression vectors and treated with
vehicle (dimethylsulfoxide), 10 �M PCN (open bar), or 5, 15,
25 �M cafestol (black bars). B, Cafestol enhances PXR inter-
action with the coactivator SRC-1. HepG2 cells were co-
transfected with a luciferase reporter construct plus expres-
sion vectors and treated with vehicle (dimethylsulfoxide), 1, 5,
or 10 �M PCN (open bars), or 1, 5, or 10 �M cafestol. C,
Cafestol induces activity of the native CYP3A4 promoter.
HepG2 cells were transfected with a CYP3A4-promoter-lu-
ciferase construct plus expression vectors and treated with
10 �M rifampicin (open bar), vehicle (dimethylsulfoxide), 22,
45, 56, 80, or 100 �M cafestol (black bars). Results are ex-
pressed as percent of the control normalized to the GH or �-gal
control (mean � SEM). CAF, Cafestol; LBD, ligand-binding do-
main; RID, receptor interaction domain; WT, wild type.
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Fig. 4. Regulation of FXR Target Gene Expression in Vivo by
Cafestol in Wild-Type vs. Knockout Mice

A, Groups of male wild type (WT), FXR�/�, or PXR�/� mice
were fed with control diet (CO), control diet supplemented
with 0.25% (wt/wt) cafestol (CAF), or 1% (wt/wt) CA for 7 d.
Total RNA was prepared from the liver of each individual
mouse, and equivalent amounts of RNA were pooled to-
gether for each treatment group, respectively. Twenty micro-
grams of each RNA sample were used for Northern hybrid-
ization with different probes as indicated, normalized to
�-actin as internal control, and presented as n � 6 mice per
treatment, per group. B, The mice are the same as those used
in panel A. Total RNA was prepared from the intestine of each
individual mouse, and equivalent amounts of RNA were
pooled together for each treatment group, respectively. RNA
(20 �g) was loaded per lane for Northern hybridization and
probed with IBABP. Data were normalized to �-actin as the
internal control and are presented as n � 6 mice per treat-
ment, per group.
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(33). Consistent with this we observed induction of
ABCA1 in the intestine by PCN and cafestol in wild-type
mice, and the response was lost in the PXR�/� mice (Fig.
7A). It appears that analogous to PCN, cafestol may
enhance the efflux of cholesterol back to the liver via a
PXR-dependent induction of ABCA1.

Mitochondrial sterol 27-hydroxylase (CYP27A1) is
expressed in liver, peripheral tissues, and macro-
phages. In the liver, CYP27A1 catalyzes the oxidative
cleavage of the steroid side chain in the classic bile
acid biosynthesis pathway and hydroxylation of cho-
lesterol to 27-hydroxycholesterol and 3�-hydroxy-5-
cholestenoic acid in most tissues (34, 35). A recent
study showed that rifampicin, the human PXR ligand,

could induce CYP27A1 expression in Caco2 cells, but
not in liver cells, revealing an intestine-specific regu-
lation of human CYP27A1 by PXR (36). The authors
suggested that PXR may play an important role in
regulating HDL metabolism in the intestine. Thus, we
also assessed the effect of cafestol on CYP27A1 ex-
pression in the intestine and observed a slight induc-
tion in response to PCN as well as a more robust
response to cafestol (Fig. 7B). Both responses were
lost in the PXR�/� mice (Fig. 7B), and no effect was
seen on CYP27A1 expression in the liver (data not
shown).

Due to the observation that FXR was not the sole
factor regulating the induction of FGF15 by cafestol
(Fig. 5), and that cafestol has an intestine-specific
effect upon PXR-target genes (Figs. 6 and 7), we won-
dered whether FGF15 could also be regulated via PXR
and generated a FXR/PXR double-knockout (DKO)
mouse model. As shown in Fig. 8, indeed FGF15 is
induced by PCN (2.5-fold) and GW4064 (15-fold) in
wild-type mice after 14-h oral gavage, and the re-
sponse is lost in the double FXR and PXR null (DKO)
mice. Cafestol also induces FGF15 in the wild-type
mice, as shown previously, and this induction is re-
duced in the DKO mice, indicating that, indeed, PXR
does play a role in the regulation of FGF15 by cafestol.

DISCUSSION

Cafestol is the most potent cholesterol-elevating com-
pound identified in the human diet and, although sev-
eral human and animal studies have investigated its
effect on lipoprotein metabolism, its precise molecular
mechanism has remained unclear (37, 38). Mechanis-
tic studies have been hampered because cafestol
does not raise serum cholesterol levels in wild-type
mice or several other animal species (39–42), but it is
effective in APOE3Leiden mice, a well-established
model in which to study diet-induced hyperlipidemia
(20). In these transgenic mice the LDL-receptor-medi-
ated clearance of apoB-containing lipoproteins is
hampered, leading to accumulation of VLDL remnants
and low-density lipoprotein (LDL). Previous studies
showed that in both rat hepatocytes and livers of
APOE3Leiden mice, cafestol repressed the expression
and activity of CYP7A1 (26, 43). Down-regulation of
CYP7A1 in the APOE3Leiden mice increases intracel-
lular cholesterol, thereby down-regulating the LDL re-
ceptor and increasing accumulation of VLDL and LDL
in the plasma.

In the present study, we found that cafestol-treated
APOE3Leiden mice had alterations in lipid parameters
similar to those observed in humans after cafestol
consumption. For example, serum cholesterol levels
were increased by 40%; serum triglycerides were in-
creased by 62%; and the total lipolytic activity in
plasma (both lipoprotein lipase and hepatic lipase ac-
tivity) was significantly decreased by cafestol treat-
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Fig. 5. The Effect on FGF15 and CYP7A1 mRNA Levels after
Treatment with Cafestol for 14 h in Wild-Type vs. FXR�/�

Mice
A, FGF15 expression in the ileum after 14-h treatment with

cafestol. B, CYP7A1 expression in the liver after treatment
with cafestol. Groups of male wild type (WT) and FXR�/�

mice (n � 10 per group) were treated for 14 h with vehicle
(VEH) (open bar), cafestol (CAF, 400 mg/kg) (black bar), or
GW4064 (GW, 30 mg/kg) (hatched bar). Total mRNA was
prepared from the intestine and liver of each individual
mouse, and gene expression was measured by quantitative
RT-PCR using glyceraldehyde-3-phosphate dehydrogenase
as the internal control. Each individual sample was analyzed
separately, and the results were pooled together. Data rep-
resent the mean � SEM and are plotted as fold change relative
to the vehicle control.
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ment (34% and 21%, respectively). In addition, mi-
croarray analysis of cafestol-treated APOE3Leiden
mice identified alterations in hepatic expression of
genes involved in lipid metabolism and detoxification.
Functional studies have shown that Apolipoprotein A5
(APOA5) regulates plasma triglyceride levels, whereby
mice that overexpress human APOA5 display signifi-
cantly reduced triglyceride levels, whereas mice that
lack APOA5 have a large increase in this lipid param-
eter (44). Consequently, the decreased expression in
APOA5 mRNA, together with the observed effects on
total lipolytic activity in plasma, correlates with the
increase in plasma triglyceride levels observed in the
APOE3Leiden mice after cafestol treatment.

Many of the genes identified from the microarray anal-
ysis that are altered by cafestol treatment are known to
be regulated by the nuclear hormone receptors FXR and

PXR (see Table 2). Consistent with this, we found that
cafestol specifically activates FXR both in vitro and in
vivo and observed suppression of CYP7A1, CYP8B1,
and NTCP expression in the livers of wild-type, but not
FXR�/� mice after cafestol feeding. The down-regulation
of CYP7A1 expression by specific FXR activators is well
described (11, 12) and is thought to be mediated by the
induction of the negative regulator SHP (17, 18). Unex-
pectedly, we did not observe induction of SHP or other
positive FXR target genes in the liver by cafestol in either
the 14-h (data not shown) or 7-d studies (Fig. 4A). How-
ever, several studies have demonstrated that SHP induc-
tion is not an absolute requirement for CYP7A1 repres-
sion (17–19, 45), indicating the existence of additional
pathways.

Of particular importance for the current results is the
recent demonstration that FXR-dependent expression of
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Fig. 6. Tissue-Specific Regulation of PXR Target Gene Expression by Cafestol in Vivo
A, CYP3A11 expression in the liver. B, CYP3A11 expression in the intestine. C, GST�1 expression in the liver. D, GST�1

expression in the intestine. Groups of male wild type (WT) and PXR�/� mice (n � 4–9 per group) were treated for 3 d with vehicle
(VEH) (open bars), pregnane-16�-carbonitrile (PCN, 200 mg/kg) (black bars), or cafestol (CAF, 400 mg/kg) (hatched bars). Total
mRNA was prepared from the intestine and liver of each individual mouse, and gene expression was measured by quantitative
RT-PCR using glyceraldehyde-3-phosphate dehydrogenase as the internal control. Each individual sample was analyzed
separately and the results were pooled together. Data represent the mean � SEM and are plotted as fold change relative to the
vehicle control.
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FGF15 in the small intestine is a key component of an
enterohepatic negative feedback pathway for bile acid
production. In this intriguing pathway the growth factor
released from the gut activates its FGFR4 receptor in
hepatocytes, which represses CYP7A1, via still poorly
understood mechanisms dependent on both kinase ac-
tivation and SHP expression (19). This provides an ele-
gant explanation for the seemingly paradoxical observa-
tions that cafestol results in FXR-dependent repression
of CYP7A1 and other negative target genes in the liver,
but fails to induce expression of positive FXR targets.
Interestingly, from the results presented herein, it ap-
pears that NTCP may also be repressed by the FGF15
signaling pathway. In this study we have also shown that

FGF15 can be regulated via PXR, in response to either
PCN or cafestol. Thus, we propose that the FXR/PXR-
mediated cafestol induction of FGF15 expression that
we observe in the intestine accounts for the negative
effects in the liver, and that the absence of positive FXR
hepatic responses is likely due to a failure of cafestol to
achieve a concentration sufficient to increase FXR acti-
vation above the basal levels associated with the rela-
tively high endogenous levels of bile acids in the liver.

The failure of cafestol to directly modulate FXR ac-
tivation in the liver likely also accounts for the discrep-
ancy between the transient elevation of serum triglyc-
erides observed in humans after cafestol consumption
(46) and the strong triglyceride-lowering effects ob-
served in rodents after treatment with potent synthetic
FXR agonists, which directly alter the expression of
hepatic FXR targets such as SREBP1c (47).

It is well established that PCN induces CYP3A11
expression in mouse liver and intestine by a PXR-
dependent mechanism (15, 48). We also observed
induction of CYP3A11 expression; however, this ap-
pears to be in a tissue-specific manner because caf-
estol-induced CYP3A11 expression was seen in the
intestine only and not in the liver. The observed induc-
tion by cafestol in the intestine was dependent upon
PXR because the effect was lost in the PXR�/� mice.
This is not the first demonstration that there is a dif-
ference in the regulation of PXR target genes in differ-
ent tissues. For example, Mrp2 mRNA expression is
not altered by PCN in mouse liver, but is induced in the
intestine by PCN in a PXR-dependent manner (33).
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Fig. 7. Cafestol Regulates Genes Involved in Cholesterol Ef-
flux from the Intestine via PXR

A, ABCA1 expression in the intestine. B, Cyp27A1 expres-
sion in the intestine. The samples are the same as those used
in Fig. 6. Groups of male wild type (WT) and PXR�/� mice (n �
4–9 per group) were treated for 3 d with vehicle (VEH) (open
bars), PCN (200 mg/kg) (black bars), or cafestol (CAF, 400
mg/kg) (hatched bars). Total mRNA was prepared from the
intestine and liver of each individual mouse, and gene ex-
pression was measured by quantitative RT-PCR using glyc-
eraldehyde-3-phosphate dehydrogenase as the internal con-
trol. Each individual sample was analyzed separately, and the
results were pooled together. Data represent the mean � SEM

and are plotted as fold change relative to the vehicle control.
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Fig. 8. FGF15 Gene Expression Is Regulated by Cafestol in
Vivo via Both FXR and PXR

Groups of male wild-type (WT) and FXR/PXR DKO mice
(n � 4–10 per group) were treated for 14 h with vehicle (VEH)
(crossed bars), PCN (200 mg/kg) (open bars), cafestol (CAF,
400 mg/kg) (black bars), or GW4064 (GW, 30 mg/kg) (hatched
bars). Total mRNA was prepared from the intestine of each
individual mouse, and gene expression was measured by
quantitative RT-PCR using glyceraldehyde-3-phosphate de-
hydrogenase as the internal control. Each individual sample
was analyzed separately, and the results were pooled to-
gether. Data represent the mean � SEM and are plotted as
fold change relative to the vehicle control.
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A key role in the detoxifying mechanisms of xenobiotic
metabolism is played by glutathione S-transferase (GST),
a system of phase II enzymes that catalyzes the conju-
gation of a great variety of electrophilic compounds with
the tripeptide glutathione (49). Several studies have dem-
onstrated that cafestol induces the expression of various
GST isoforms (30, 31, 52–55), and this has been postu-
lated to be how cafestol exerts an anticarcinogenic effect
(10, 56). The xenobiotic receptor PXR has also been
shown to regulate several GST isoforms including
GST�1 and GST�1 (48). In this study we observed in-
duction of GST�1 in the liver of the wild-type mice by
both cafestol and PCN. The effect by PCN was abol-
ished in the PXR�/� mice, whereas the induction by
cafestol remained. In the intestine we saw an induction in
GST�1 expression by cafestol, which was partially lost in
the PXR�/� mice. However, we did not see an induction
in the expression of GST�1 in the intestine as previously
reported by Maglich and colleagues (48) in response to ip
injected PCN. From the results obtained in this study we
conclude that cafestol can regulate PXR-target gene ex-
pression in a tissue-specific manner.

The remaining induction in GST�1 expression seen
in the intestine of the PXR�/� mice treated with caf-
estol may be due to regulation by Nrf2, a basic leucine
zipper transcription factor (NF-E2 p45-related factor).
Evaluation of the role of Nrf2 in GST enzyme induction by
chemoprotective agents, including cafestol, was studied
using a gene knockout mouse model (57). GST activity
was found to be lower in the Nrf2�/� mouse than in the
wild type, suggesting that Nrf2 regulates the constitutive
activity of the GST enzymes. Additionally, cafestol treat-
ment for 14 d induced GST enzyme activity and protein
expression in the small intestine of wild-type but not
Nrf2�/� mice. The authors also reported Nrf2-dependent
regulation of GST�1 by cafestol, and this may explain
why we did not see any PXR-dependent regulation in
our study. It is intriguing as to why cafestol potently
induces the expression of GSTs in the liver whereas no
such induction was seen on positive FXR target genes
in the liver. At the present time we do not know whether
the observed effects upon GSTs in the liver are caused
by cafestol itself or a metabolite, and studies are cur-
rently underway to clarify this issue.

In summary, we conclude that cafestol, the cholester-
ol-raising factor from coffee beans, can directly regulate
expression of genes involved in cholesterol metabolism
by activating the nuclear receptors FXR and PXR (Fig. 9).
We have demonstrated that cafestol is an intestine-spe-
cific activator of PXR. We also show that FGF15 is a PXR
target gene and that both FXR and PXR contribute to the
cafestol-mediated induction of this gene. We propose
that direct regulation of such FXR and PXR target genes
in the intestine combines with indirect effects in the liver
to contribute to the cholesterol-raising effect of cafestol
in humans. Our results provide new insights into the
complexity of the actions of cafestol and suggest spe-
cific directions for the elucidation of the detailed bio-
chemical mechanisms that account for its diverse bio-
logical effects.

MATERIALS AND METHODS

Materials

Cafestol was purchased from LKT Laboratories, Inc. (St. Paul,
MN). All other chemicals were purchased from Sigma Chemical
Co. (St. Louis, MO). Media and supplements for cell culture
were purchased from Invitrogen Corp. (Carlsbad, CA) or Cam-
brex Bioscience (Verviers, Belgium). GW4064 was a gift from
Tim Willson at GlaxoSmithKline (Research Triangle Park, NC).

Plasmids

The various Gal4 DNA-binding domain-receptor ligand-bind-
ing domain chimeras (58), full-length human FXR (14),
hFXR�AF2 mutant, hW469A mutant (29), full-length murine
FXR, the �9C FXR mutant (59), full-length murine (60) and
human PXR (61), wild-type and mutant human BSEP (62),
IBABP, and CYP3A4 (63) promoter constructs have been
reported previously. The PXR AF2 mutants for mouse
(E424K) and human (E427K) were created by site-directed
mutagenesis using the QuikChange Site-Directed Mutagen-
esis kit from Stratagene (La Jolla, CA), and were confirmed by
sequencing.

Animal Feeding Study for the Microarray

Hyperlipidemic APOE3Leiden mice (line no. 2, N21st gener-
ation, �99% C57BL/6Jico genetic background) (20) were
housed under standard conditions in individually vented
cages. Experimental procedures were approved by the local
Committee for Care and Use of Laboratory Animals at Leiden
University Medical Center. Female APOE3Leiden mice, 10 wk
of age received either the control diet [a semisynthetic diet,
diet W (18.2 MJ/kg (Hope Farms, Woerden, The Netherlands)
enriched with saturated fat (15 g/100 g) and cholesterol (0.25
g/100 g)] (n � 7) or the same diet supplemented with 0.04%
cafestol (wt/wt) (n � 4). After 30 d, mice were bled and killed,
and livers were harvested.

Measurement of Serum Lipids

Blood (200 �l) was collected from each mouse after a 4-h fast
at time points 0 and 4 wk of dietary treatment. Total serum
cholesterol (kit no. 236691; Roche Nederland, Woerden, The
Netherlands), triglyceride without free glycerol (kit no.
905321; Roche), and free fatty acids (NEFA-C kit; Wako
Chemicals Neuss, Germany) were measured enzymatically
according to the manufacturer’s protocol.

Determination of Lipoprotein Lipase and Hepatic Lipase
Enzyme Activity in Plasma

Plasma from mice fasted for 4 h was collected from the tail
vein 10 min after injection of heparin (0.1 U/g body weight).
The assay of postheparin plasma-lipolytic activity was per-
formed in the absence or presence of 1 M NaCl to estimate
both the hepatic lipase activity and the lipoprotein lipase
activity. The lipoprotein lipase activity was calculated as the
portion of total lipase activity inhibited by 1 M NaCl, as pre-
viously reported (64).

Microarray Analysis: Gene Expression Profiling and
Functional Annotation of Genes

Total RNA from the caudate liver lobe of APOE3Leiden mice
was isolated using RNA-STAT 60 (Tel-Test, Friendswood,
TX). Poly (A) RNA was then separated from the total RNA
using a poly (A) Tract mRNA systems kit (Promega Corp.,

1612 Mol Endocrinol, July 2007, 21(7):1603–1616 Ricketts et al. • Cafestol as an Agonist Ligand for FXR and PXR

The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 12 March 2016. at 09:52 For personal use only. No other uses without permission. . All rights reserved.



Madison, WI) and labeled with Cy5 and Cy3 fluorescent dyes
for hybridization, as previously described (65). Labeled RNA
was hybridized in duplicate on Gem 2.03 microarrays con-
taining 9552 genes and expressed sequence tags (Incyte
Genomics, Palo Alto, CA). Arrays were scanned on a GenePix
4000A scanner. Data were normalized and analyzed using
the GEMTools software version 2.5.1 (Incyte Genomics), as
previously described (66).

Statistical Analysis for the Microarray

Significant differential gene expression was determined for
each individual mouse in the microarray using the Z-test on
the log-transformed expression ratios of the duplicate arrays,
using all (7816) valid measurements (67). Based on the Z-test,
the overall minimal significant difference in expression was
determined at fold change � 1.4 with a power (1 � �) of 0.8.
ANOVA was performed using MA ANOVA software to ac-
count for differential variations between samples to obtain
unbiased estimates of expression ratios (68). Hierarchical
clustering was performed by average linkage clustering using
euclidean distance in Spotfire (Spotfire Inc., Somerville, MA).
GeneHopper was used to retrieve information from the Gene
Ontology database (December 2003 version) (69).

Cell Culture

HepG2 and CV-1 cells were maintained in DMEM supple-
mented with 10% FBS. Transient transfection was performed

using the calcium phosphate precipitation method. Cells were
assayed for luciferase (Promega) activities 24 h after addition of
ligands, and reporter expression was normalized to GH activity
(Quest Diagnostics, Chicago, IL) or �-gal (Applied Biosystems,
Chicago, IL). Similar results were obtained from at least three
independent experiments, performed in triplicate.

Animal 14-h, 3-d, and 7-d Feeding Studies and Diets

Mice were housed under standard conditions. Experimental
procedures were approved by the local Committee for Care
and Use of Laboratory Animals at Baylor College of Medicine.
FXR�/� mice (70) and PXR�/� mice (71) were described
previously. The FXR�/� mice were backcrossed with C57BL6
mice to the fifth, and the PXR�/� mice were maintained on a
mixed C57BL6/129 background. The double FXR/PXR null
mice were generated by cross-breeding the FXR and PXR
single-knockout mice and were maintained on a mixed
C57BL6/129 background. The correct genotype was verified
for all strains using previously reported primer sequences and
reaction conditions (70, 71). Age-matched groups of 8- to
10-wk-old male mice were used in all experiments (n � 6 per
experimental group). Experiments were performed with a
control diet (rodent diet 5001; LabDiet, Brentwood, MO) sup-
plemented with 0.25% cafestol, or 1% CA for 7 d (all wt/wt).
On the last day the mice were fasted for 4 h and tissues were
harvested and mRNA isolated as described below. For the
14-h studies, mice were fed either vehicle (polyethylene gly-
col 400-Tween 80; 4:1), cafestol (400 mg/kg), or GW4064 (30
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Fig. 9. Schematic Representation of the Proposed Mechanisms by Which Cafestol Increases Cholesterol Levels in Vivo
1) Cafestol is consumed in the form of unfiltered coffee and passes into the stomach and then into the small intestine. 2) In the

small intestine cafestol activates FXR and PXR. IBABP is induced by cafestol in a FXR-dependent manner, further increasing the
transportation of bile acids into the portal circulation. Upon activation of PXR, cafestol induces the expression of Cyp27A1 and
ABCA1, resulting in an increase in the efflux of cholesterol into the portal circulation. Cafestol also induces Cyp3A11 and GST�1
gene expression via PXR, leading to an increase in detoxification. Cafestol acts via both FXR and PXR to induce FGF15, which
signals to the liver to repress bile acid synthesis. 3) In the liver, Cyp7A1, Cyp8B1, and NTCP expression is repressed via FXR,
thereby reducing the synthesis of bile acids. The direct regulation of such FXR and PXR target genes in the intestine combines
with indirect effects in the liver to contribute to the cholesterol-raising effect of cafestol in humans.
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mg/kg) by oral gavage (n � 10 per experimental group). For
the 3-d study (wild type vs. PXR�/�) mice were fed either
vehicle (polyethylene glycol 400-Tween 80, 4:1), PCN (200
mg/kg), or cafestol (400 mg/kg) by oral gavage (n � 4–9 per
experimental group).

RNA Isolation and mRNA Quantification

Total RNA was isolated from livers or intestines using Trizol
reagent (Invitrogen). Gene expression was analyzed by Northern
blot analysis (72), or by quantitative PCR using Taqman one-
step RT-PCR Master mix reagents (Applied Biosystems). Primer
and probe sequences can be provided upon request.

Statistical Analysis

An independent sample two-sided t test was performed to
determine statistically significant differences between sam-
ples. Statistical significance is displayed as * (P � 0.05) or
** (P � 0.01).
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